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INTERFACE SLIP CAUSED BY AN SH-PULSE
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AbItnct-The article discusses the reflection and refraction of a plane horizontally polarized (SH) stress
pulse by an interface that can slip when the incident pulse is sufficiently strong to break friction. The
mathematical nature of the problem depends on the velocity with which the slip zones propapte along the
interface. If this velocity is supersonic with respect to both solids, the problem can be solved in closed
form. Otherwise, the formulation leads to singular integral equations. A parabolic stress pulse is used to
illustrate the result.

1. INTRODUCTION
We have recently treated the interaction of plane harmonic and horizontally polarized (SH)
waves with a unilateral interface[l, 2) between two solids. Such waves lead to a periodic array
of slip and stick zones. In the present article we consider the reftection and refraction of a plane
SH stress pulse that may result in an irregular array of slip and stick zones propagating along
the interface.

Suppose that the incident pulse has the phase velocity Co and that its angle of incidence with
respect to the interface normal is 80• Then the interface disturbance propagates with the
velocity

v =co/sin 80. (I)

In the analysis one must distinguish between two cases. When v is greater than the phase
velocities in both solids (supersonic case), the pulse retains its shape upon reftection and
refraction from a bilateral interface that does not slip. Moreover, when localized slip starts, the
shear stresses remain unchanged outside the slip zones, and the solution can be obtained by
elementary means. When v falIs between the speeds of shear waves in the two solids (transonic
case) the interaction is more complicated, and the formUlation leads to singular integral
equations. In the folIowing sections we consider each case separately.

2. SUPERSONIC CASE

We consider two elastic solids that are held together by the applied pressure p. and are
subjected to the applied shear tractions q. as shown in Fig. I. The shear modulus is denoted by
p" c =(p,/p)1/2 is the phase velocity of an S8-wave and bars are used to refer to the physical
constants and field quantities associated with the upper half space. The indices n=0, 1,2 are to
distinguish between the three waves in Fig. I.

The displacement of the incident wave is taken as

where

Yo =/cJ..x •plO) - cot).
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Fig. I. Reflected and refracted SH-pulse.

The unit vector plO) defines the direction of propagation of the incident wave[3), and Co is a real
constant. The waves reflected and refracted by the bilateral (welded) interface are of the same
form as (2), but the vector p and the argument y of the function F must be modified
accordingly. The shear traction transmitted by the bilateral interface is determined as in [3]:

(4)

where, with c =Co,

(5)

is a coordinate moving along the interface with velocity v= clsin 80. and

The amplitude do of the shear tractions in the bilateral problem is

do = c leo 2f cos 80cos 82
/L 0 'Ycos 80+fcos 82

with

(6)

(7)

Moreover, since

f = jil/L, 'Y =clc. (8)

one must have

'70 ='71 ='72 ='7,

Ieoc =k1c =k2c
sin 80 sin 8. sin 82
-c-=-c-=-c-·

(9)

(10)

(1 ])

We take Co> 0, so that do> O. We also assume that the two solids adhere before the pulse



strikes the interface, so that
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q""<I.p""
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(12)

where I.. is the coefficient at static friction.
When the amplitude do is sufficiently large, localized slip takes place, and the bilateral

solution (4) is no longer applicable and must be corrected. We construct the corrective solution
by viewing the slip zones as distributions B(.,,) of screw dislocations moving with velocity v
along the interface. The shear traction due to this dislocation distribution is [4]

where

(13)

(
V2 )1/2

(T = ~-I . (14)

The slip veocity is related to the dislocation distribution by

(15)

The boundary conditions at the interface involve the slip velocity V(.,,) defined by (15), and
the total shearing tractions 5(.,,) which are nothing else but the sum of (4) and (13). Thus in the
stick zones

V(.,,) =0

15(.,,)1 <I.p"

and in the slip zones

15(.,,)1 = IkP"

sgn5(.,,) =sgnV(.,,)

where Ik is the coefficient of kinetic friction.
If the slip velocity in the slip zones is positive, (18) can be replaced with

or

The amplitude do of the bilateral shear tractions may be expressed as

From (16), (15) and (21) the dislocation distribution is obtained directly as

(16)

(17)

(18)

(19)

(20)

(21)

(22)

in slip zones

in stick zones.
(23)
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The shear tractions are
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in slip zones

1
fkfJ"',

S( T/) =
dof( T/) +q"', in stick zones

and the slip velocity

1
2Cdkoc [dol(TI) +q" - !kfJ"'], in slip zones

V(TI) = 0

0, in stick zones.
(25)

The location and the extent of the slip zones are determined by the inequality (17) and the
signum condition (19). The reasoning and the results are quite similar to those for plane
harmonic waves[l], and they are shown schematically in Fig. 2 for an incident pulse of a
parabolic shape. We note that discontinuities in the slip velocity and shear tractions occur at the
leading edges of the slip zones if f. > ft. This behavior was also observed in [I] and is
characteristic of the supersonic case.

An interesting situation evolves when f"p'" < q'" < !sP"'. Once the incident pulse breaks static
friction in such case, slip will theoretically not stop after the passage of the pulse.

3. TRANSONIC CASE

Assuming that the upper solid is acoustically faster than the lower, the transonic case occurs
for angles of incidence in the range

c <~(J< C, or c < v < C.
sm 0

(26)

In this range, total reflection is observed, do as defined by (7) is complex, and the interface
shear traction in the bilateral problem does not retain the shape of the pulse [5]. Since only the
effect of localized slip is of interest in this paper, the total reflection of a stress pulse will not be
pursued further. Instead the transmitted shear traction is simply taken in the form of (4), but
with the understanding that (6) or (7) no longer apply. The dislocation stress is now[4]

(27)

5("1)

1

\
\
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Fig. 2. Shear traction and slip velocity ror a parabolic pulse in the supersonic range.
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(
V2)JI2,,.= ]-t 2
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(28)

and B(.,.,) is non-zero only in the slip zones. For the purpose of illustration and without loss of
generality we assume that only one slip zone a < .,., <" is generated. Applying the boundary
conditions as in the previous section, we obtain a Cauchy singular integral equation for B(.,.,):

where we have set

and

b=~
f(l-

(29)

(30)

(31)_ fp;·rit
sid - 2 1"'2- 2'

(T +rCl'

For the solution of (29) we follow [6]. The inequality precludes stress singularities in the
transition from slip to stick, and a bounded solution must be sought. The characteristic function
of (29) is then

w(.,.,) =(I' - .,.,y'(.,., - a)I-A

tan 1TA=-b, G<A<l)'

The solution of the integral equation is

provided the consistency condition

(32)

(33)

(34)

(35)

is satisfied.
Equation (35) together with the inequality conditions determine tbe parameters a and 1'. To

proceed bowever with the analysis we must specify 1(.,.,). We may take, for instance, a
parabolic shape

(36)

It is desirable to obtain a solution in closed form to show clearly the effect of tbe inequality
conditions. Thus we assume that the level of the applied loads and the combination of materials
are such that the slip zone falls within tbe range of the interface tractions in the bilateral
problem, or that lal <1 and 'I'I <1. The integrations involved are then elementary and can be
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found in (7]. Using (36) in (35) we obtain the following equation for a and 13

(37)

The dislocation distribution is obtained from (34) as

(38)

The shear traction in the stick zones is

(39)

Carrying out the integrations in (39) yields

5(11) =stlo!(11) +q'" -.sto{[A(13 - a) +a -11J[A(13 - a) +a +11]

+[A(I3-a)+a+l1]I11-I3'AI71-all-Asgn(71-a)+~(13 -a)2A(1- A)}. 11 > 13. 11 <a.

(40)

It can be verified from (40) that at a and 13 the shear traction is continuous. Thus the transition
from stick to slip will be effected before static friction is reached. We cannot include the effect
of static friction without introducing an extra zone along which the transition from static to
kinetic friction is achieved according to some continuous friction law. A similar situation was
encountered in [2]. It seems that the discontinuous transition required by Coulomb's law can
only be accommodated in the supersonic case where the fields exhibit local dependence. In the
transonic range. total reRection leads to a smearing out effect which is inconsistent with
Coulomb's law of friction for fs'¢ f•. For the purpose of this paper we will adopt the common
assumption of equal coefficients of friction

f.=ft=f· (41)

The conditions (17) and (19) must now be enforced. In view of (15), (19) requires that
B(1/»O or that

A(13 - a) +2a >0. (42)

To satisfy (17) we must require that the maximum of 5(71) in the stick zones does not exceed (in
absolute value) fp"'. This is achieved by making the slope of 5(11) vanish at a, yielding

A(13 - a)+ 2a =O.

The parameters a and 13 can be determined by solving (37) and (43). From (43) we obtain

2-A
13=---a

A

and from (44) and (37),

(43)

(44)

(45)

Note that for slip to start, one must have Jlo+q'" - fp'" > O. Also 6A - 3A2
- 2<0 for the given
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Fig. 3. Variation of a and 13 with (jp'" - q"'l/Jiowith A = 0.7 for a parabolic pulse in the transonic case.
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range of A. In addition, for a, fJ to fall between (-1, 1), A, q'" and (fp"'/do) are restricted by

2-A[ A2 (q"'-tP"')]112-::;r- 6A - 3A2- 2 1+ do < 1.

Figure 3 shows how a and {J vary with (fp'" - qjldofor A =0.7.

(46)
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